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Supplemental File S1 1 

Derivation of expressions for flow area, pathlength corrections, grid areas, grid pathlengths and 2 

volume averaging basis adjustment 3 

 4 

To accompany "How does leaf anatomy influence water transport outside the xylem?" by TN 5 

Buckley et al. 6 

_____________________________________________________________________ 7 

Flow areas per unit bulk area,  8 

For flow across membranes, the potential area for transport may be greater than the simple cross-9 

sectional area, or bulk area.  For example, the curved surfaces of mesophyll cells present a 10 

greater area of membrane for transport than the simple projected areas of those cells in the 11 

direction of flow.  However, the effective area is also reduced in proportion to the connectivity of 12 

mesophyll cells (the fraction of total surface area that is in contact betweenadjacent cells; fc), and 13 

the complement of the tissue porosity (pp).  The correction factors () are the ratios of actual 14 

contacting surface area to projected cross sectional area.  For vertical transmembrane flow in 15 

palisade tissue, this is 16 

 17 

(S1)     cp
p

p
cppvm fp

r

r
fp  12

4
1

2

2
2
1

, 


  18 

 19 

The numerator is one-half of the surface area of a sphere, which is also the surface area of the 20 

curved end of a capsule.  The denominator is the projected cross-sectional area of the cell.  An 21 

identical expression also arises for both vertical and horizontal transmembrane flow in spongy 22 

tissues: 23 

 24 

(S2)   csshmsvm fp 12,,   25 

 26 

The surface area of a capsule is 4rp
2

 + 2rp(hp – 2rp) and the cross sectional area along the 27 

long axis is rp
2

 + 2rp(hp – 2rp).  Therefore, for horizontal transmembrane flow in palisade tissue,  28 

 29 
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 31 

All other cell types are modeled as rectangular boxes with zero tissue porosity, so their ratios of 32 

projected and actual transmembrane flow areas are simply unity. 33 

 34 

For apoplastic flow paths, the total area available for flow is approximately the product of cell 35 

circumference, cell wall thickness and cell wall porosity, whereas the bulk area is the cell cross 36 

sectional area divided by the complement of tissue porosity.  For vertical apoplastic flow in the 37 

palisade, this gives 38 

 39 
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 41 

For horizontal apoplastic flow in the palisade, this gives 42 

 43 
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 45 

For horizontal or vertical flow in the spongy mesophyll, the result is analogous to a,pv: 46 

 47 
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 49 

We modeled epidermal cells as rectangular boxes with square bases of width we and height he.  50 

The area correction for vertical apoplastic flow into the epidermis is thus 51 

 52 
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 54 
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For horizontal flow, the result is 55 

 56 
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 58 

We modeled bundle sheath and BSE cells as cubes with width wb and wx, respectively, which 59 

gives results analogous to a,ev: 60 

 61 

(S9) 
x

axa
xhaxva w

tp4
,,   , and 62 

 63 

(S10) 
b

aba
ba w

tp4
,  . 64 

 65 

Finally, for gas flow, the area correction is simply the tissue porosity: g,p = pp and g,s = ps for 66 

palisade and spongy mesophyll, and zero for all other tissues. 67 

 68 

_____________________________________________________________________ 69 

Flow pathlengths per unit bulk pathlength,  70 

For apoplastic flow in spongy mesophyll and horizontal apoplastic flow in palisade mesophyll, 71 

the direct route across a cell is twice its radius, whereas the minimum apoplastic route is half of 72 

the cell circumference, or  times its radius, corrected for mesophyll connectivity (fc).  The terms 73 

for radius cancel out, giving 74 

 75 

(S11)   cphasvasha f 12
1

,,,  76 

 77 

For vertical apoplastic flow in palisade mesophyll, the direct and apoplastic routes are both 78 

longer than for horizontal flow by the cell height hp minus twice the radius, which gives 79 

 80 
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(S12) 
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 82 

The actual and direct flow paths are equivalent for all other tissues and modes of flow, giving  83 

= 1. 84 

 85 

_____________________________________________________________________ 86 

Grid areas (a) and pathlengths (l) 87 

The grid is a set of 744 tissue bands delineated by 25 planes parallel to the epidermis, and 31 88 

concentric cylinders centered on a vertical axis located at the center of the areole. The upper- and 89 

lower-most planes coincide with the upper and lower leaf surfaces, respectively, thus defining 24 90 

"rows" of tissue bands (indicated below with subscripted indices i).  The outermost cylinder 91 

coindicides with the lateral midpoint of the nearest minor vein, thus defining 31 "columns" of 92 

tissue bands (indicated below with indices j). 93 

 94 

With three exceptions, the vertical and radial thicknesses of these tissue bands are identical to 95 

one another.  Two of these exceptions are the uppermost and lowermost rows (i = 1 and 31, 96 

respectively), whose thicknesses are defined by the measured upper and lower epidermis 97 

thicknesses, respectively.  All other rows are defined as 1/29th of the remaining leaf thickness 98 

(equal to the sum of measured palisade and spongy mesophyll tissue thicknesses, tp and ts).  The 99 

third exception, which applies only in heterobaric species (those possessing bundle sheath 100 

extensions) is the outermost column (j = 1), whose thickness is defined as one-half of the 101 

measured bundle sheath extension width.  In these species, the widths of all other tissue columns 102 

are equal to 1/23rd of the difference between areole radius (rareole) and BSE half-width (wx,tot/2).  103 

In homobaric species (which lack bundle sheath extensions), all columns have the same width, 104 

which is 1/24th of the areole radius.  These three exceptions ensure that the volumes, horizontal 105 

areas and flow pathlengths involving the epidermis and/or BSEs are appropriate to the actual 106 

tissue dimensions.  (Further corrections are required to accommodate the modeled geometry of 107 

the bundle sheath; these are described in the next section.) 108 

 109 
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The area for horizontal flow between tissue bands j and j+1 with thickness ti (ti = te for epidermal 110 

rows or (tp + ts)/29 otherwise) is equal to the product of ti and the circumference of the outer 111 

cylinder bounding the band at j+1.  For heterobaric species, this area is 112 

 113 

(S13)       231121; ,2
1

,  jwrtjja totxareoleiih   114 

 115 

and for homobaric species, this area is 116 

 117 

(S14)    24121;, jrtjja areoleiih    118 

 119 

The area for vertical flow between bands at column j and rows i and i+1 is equal to the vertical 120 

projected area of the band at column j.  This equals the difference between the areas of circles 121 

defined by the outer and inner radial boundaries of column j.  For the outermost column (j = 1) in 122 

heterobaric species, this area is 123 

 124 
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 126 

For all other columns in heterobaric species, the area is 127 

 128 

(S16) 
         
    529247

2312311
2

,2
1

2
,2

12
,2

1
1,

jwr

jwrjwra

totxareole

totxareoletotxareolejv








 129 

 130 

For all columns in homobaric species, the area is 131 

 132 

(S17)   5762492
, jra areolejv    133 

 134 

The direct flow pathlengths between adjacent bands are computed as the distances between the 135 

vertical and radial midpoints of those bands.  Thus, the direct pathlength between the upper 136 

epidermis (i = 1) and the row of tissue bands directly below it (i = 2) equals one-half of the upper 137 
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epidermis thickness (teu) plus one-half of the thickness of one non-epidermis band, which as 138 

described above is 1/29th of the sum of palisade and spongy tissue thicknesses.  This flow path is 139 

 140 

(S18)    speuv tttiil  29
1

2
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 142 

Similarly, the direct flow pathlength between rows 30 and 31 (the lower epidermis) is 143 

 144 
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1
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 146 

The direct vertical flow pathlengths between all other rows is simply 147 

 148 

(S20)  spiv ttl  29
1

302,  149 

 150 

The direct horizontal flow pathlength between the outermost tissue band column (j = 1) and the 151 

adjacent column (j = 2) differs for heterobaric and homobaric species.  For heterobaric species, 152 

the value is one-half of the bundle sheath extension half-width plus one-half of 1/23 of the 153 

remainder of the areole radius: 154 

 155 
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 157 

For connections between all other adjacent columns in  heterobaric species, the value is 158 

 159 
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23
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 161 

For homobaric species, the direct horizontal flow pathlength between any two adjacent columns 162 

is simply 1/24th of the areole radius: 163 

 164 

(S23) 24areoleh rl   165 

 166 
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_____________________________________________________________________ 167 

Estimating the number of grid rows for each tissue type 168 

We estimated the number of grid rows for different tissue types based on measured tissue 169 

thicknesses, as follows.  The number of bundle sheath rows (nbs) was the greater of 1 and the 170 

quantity 29hbs/(tp + ts), rounded to the nearest whole number.  This recognises that the palisade 171 

and spongy mesophyll tissue thicknesses combined (tp + ts) occupy 29 grid rows in total.  The 172 

number of rows between the BS and the upper epidermis, nxu, was computed as (29 – nbs)hxu/(hxu 173 

+ hxl) (rounded to the nearest whole number), where hxu and hxl are the distances from the bundle 174 

sheath to the upper and lower epidermis, respectively; the number of rows between the BS and 175 

the lower epidermis, nxl, was then 29 – nbs – nxu.  The number of palisade rows (np) was 29tp/(tp + 176 

ts), rounded to the nearest whole number, and the numer of spongy mesophyll rows (ns) was 29 – 177 

np. 178 

 179 

_____________________________________________________________________ 180 

Corrections to account for bundle sheath geometry 181 

We modeled the bundle sheath as the space between the radial faces of two torus-like objects: 182 

one is actually an elliptic torus, and the other is a similar solid of revolution that is nested within 183 

the elliptic torus but has dimensions such that the distance from its surface to that of the elliptic 184 

torus is everywhere identical. The elliptic torus represents the outer face of the BS (the face 185 

farther from the xylem), the smaller (inner) torus-like object is the inner face, and the constant 186 

distance between the two faces represents the constant thickness of the BS itself. The outer face 187 

contacts mesophyll and BSE tissues.  However, because the BS is represented in the grid as 188 

simply a stack of cylindrical tissue bands in the outermost column of tissue bands, the total area 189 

of the BS is not accurately represented by the grid areas computed as described in the preceding 190 

section.  We therefore corrected the values for BS bulk conductivity applied to the grid in such a 191 

way that the total hydraulic conductance out of the BS accurately reflects the toroidal model 192 

described above. In this section, we describe how the relevant areas and corrections were 193 

calculated. 194 

 195 

The area of the inner and outer faces of the BS can be computed using Pappus' Centroid 196 

Theorem, which states that the surface area of a surface of revolution created by revolving a 197 
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curve about an axis is equal to the product of the arc length of the curve and the distance 198 

travelled during the revolution by the curve's centroid (the point coinciding with the geometric 199 

average of all points in the curve). To compute these values, we therefore require the appropriate 200 

arc lengths, centroids and radii of revolution.  The major radius of both tori is equal to the areole 201 

radius.  The vertical radius of the ellipse (the "tube") for the outer torus is one-half of the 202 

measured height of the bundle sheath (hbs), and the horizontal radius of that ellipse is computed 203 

from hbs and the bundle sheath perimeter (pbs) as pbs/ – hbs/2.  The two radii of the ellipse for the 204 

inner torus are smaller than the analogous values for the outer torus by an amount equal to the 205 

measured bundle sheath cell thickness (tbs).   206 

 207 

The arc length for the outer face is thus simply pbs/2, and the arc length for the inner face is 208 

((pbs/ – hbs/2 – tbs) + (hbs/2 – tbs))/2 = (pbs/ – 2tbs)/2 = pbs/2 - tbs.  It is easily shown that the 209 

centroid for the outer face is located at a distance 4(pbs/ – hbs/2)/(3) from the edge of the 210 

areole, and the centroid for the inner face is located at a distance 4(pbs/ – hbs/2 – tbs))/(3).  The 211 

distance travelled by these centroids during revolution is 2 times the difference between rareole 212 

and each of these values.  Thus, the area of the outer face is 213 

 214 
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 216 

and the area of the inner face is 217 
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 220 

 221 

The total computed grid area for contact between the BS and mesophyll in heterobaric species is 222 

nbs times the horizontal projected area for contact between the outermost column and the adjacent 223 

column, which from Eqn S13 is 224 

 225 



Leaf anatomy and water transport, Buckley et al. (Supplemental Material) page 9 of 14 

 226 

(S26) 
   totxareole

sp
bsmesbsgrid wr

tt
na ,2

1
, 2

29



   227 

 228 

For homobaric species, this area (from Eqn S14) is 229 
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 232 

The total computed grid area for BS to BSE contact in heterobaric species is equal to twice the 233 

vertical projected area of a tissue band in the outermost column, which from Eqn S15 is 234 

 235 
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 237 

For homobaric species, from Eqn S17 this area is 238 

 239 

(S29) 576472 2
,, areolevertmesbsgrid ra   240 

 241 

We assumed that the fraction of the total outer BS surface area in contact with the BSEs was 242 

equal to the BSE width divided by one-half of the BS perimeter (2wx,tot/pbs), so that the total BS-243 

BSE surface area was 2wx,totabs,out/pbs.  Thus, when calculating conductances for vertical 244 

transport between BS and BSE nodes in heterobaric species, the bulk flow area computed from 245 

Eqn x was corrected by the ratio 246 

 247 
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 249 

For conductances for horizontal transport between BS and mesophyll nodes in heterobaric 250 

species, the bulk flow area was corrected by the following ratio: 251 

 252 
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 254 

The analogous corrections for homobaric species are identical except that the BSE width wx,tot is 255 

replaced by twice the width of the outermost column of tissue bands in these species, or 256 

2rareole/24: 257 

 258 
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 262 

_____________________________________________________________________ 263 

Computing volumes for each node 264 

To compute volumes for each node, we consider each node to represent a three-dimensional 265 

annulus within the areole, bounded horizontally by cylinders and vertically by planes.  For 266 

mesophyll nodes, the cylinders are chosen to bisect the lines connecting each adjacent node 267 

horizontally, and the planes are chosen to bisect the lines connecting each adjacent node 268 

vertically. For the upper and lower rows of nodes, which represent epidermis, we used measured 269 

upper and lower epidermis thicknesses (teu and tel) to compute volumes.  For BSE nodes, we used 270 

the measured BSE half-width (wx,tot/2) to compute volumes.  The calculations of hydraulic 271 

conductances presented in this study did not require computation of bundle sheath node volumes.  272 

 273 

_____________________________________________________________________ 274 

Example of spurious differences in BS and outside-BS hydraulic conductances arising from 275 

defining outside-xylem hydraulic conductance in terms of the average water potential of the 276 

entire symplast 277 

In experimental studies, Kox is defined in terms of leaf water potential, which equals the volume-278 

weighted average water potential of the entire outside-xylem compartment (ox), provided that 279 

negligible water leaves the xylem during equilibration after excision.  Thus, 280 
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 281 

(S34) oxox EK  . 282 

 283 

In this study, we sought to partition Kox into two serial pathways: the BS (with conductance Kb) 284 

and the outside-BS compartment (with conductance Kob), such that 285 

 286 

(S35) 
obbox KKK

111
 . 287 

 288 

where Kb is calculated from the water potential drawdown across the BS, or bn (the drawdown 289 

to grid nodes immediately adjacent to, or neighboring, BS nodes; hence the subscript bn): 290 

 291 

(S36) bnb EK  . 292 

 293 

Combining S34-S36 gives Kob as  294 

 295 

(S37)  bnoxob EK   . 296 

 297 

The value of Kob given by Eqn S37 is not uniquely defined by outside-BS water transport 298 

properties, however. Imagine two leaves that are identical in every respect except for the value of 299 

Kb; specifically, suppose leaf A has Kb twice as large as leaf B. The computed values of Kob will 300 

differ for these two leaves, as demonstrated in the example shown in the table below, and the 301 

difference will depend on the volume fractions of the BS and outside-BS compartments. This 302 

spurious difference in calculated Kob can be traced to the fact that Kob is defined in terms of a 303 

water potential (ox) that includes some tissues (the BS) upstream of the tissues whose transport 304 

properties are meant to be characterised by Kob. In the example below, this leads to a 63% 305 

difference in Kob between the two leaves, even though they have identical outside-BS transport 306 

properties. 307 

308 
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 309 
 310 

parameter leaf A leaf B 

fraction of OX volume that is in BS (fb) 0.1 

fraction of OX volume that is distal to BS (fob) 0.9 

transpiration rate (E) 10 

water potential drawdown from outer edge of BS to 

site of average water potential of outside-BS 

tissues (ob) 

0.4 

BS hydraulic conductance (Kb) 50 25 

water potential at outer edge of BS (bn) -E/Kb = 0.2 0.4 

water potential of BS (b) bn/2 = -0.1 -0.2 

   

average water potential of outside-BS tissues (ob) bn – ob = -0.5 -0.6 

outside-xylem water potential (ox) fbb+fobob = -0.46 -0.56 

outside-xylem hydraulic conductance (Kox) E/|ox| = 21.74 17.86 

outside-BS hydraulic conductance (Kob) 1/(1/Kox-1/Kb) = 38.46 62.54 

% spurious difference in Kob 63% 

 311 

We addressed this issue by defining Kox in terms of the volume-weighted water potential 312 

drawdown to all tissues outside the BS (ob; Eqn 10 in the main text). 313 

314 
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 315 

Table S1. Flow areas per unit bulk area () used to calculate bulk conductivities from intrinsic 316 
conductivities.   317 
 318 
tissue flow direction symbol(s) formula 
apoplastic flow    

palisade mesophyll vertical a,pv   pappa rtpp 12  

palisade mesophyll horizontal a,ph 
   

 pppp

ppappa

rhrr

hrtpp

22

221
2 






 

spongy mesophyll both a,s   sassa rtpp 12  

epidermis vertical a,ev eaea wtp4  

epidermis horizontal a,eh  112   eeaea whtp  

bundle sheath extensions both a,x xaxa wtp4  

bundle sheath - a,b baba wtp4  

    
transmembrane flow    

palisade mesophyll vertical m,pv   cp fp12  

palisade mesophyll horizontal m,ph 
 

  pp

pcp

rh

hfp








42

1
 

spongy mesophyll both m,s   cs fp12  

other both m 1 
    
gas phase flow    

palisade mesophyll both g,p pp 
spongy mesophyll both g,s ps 

other both g 1 
 319 

320 
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Table S2. Flow pathlengths per unit direct pathlength () used to calculate bulk conductivities 321 
from intrinsic conductivities.   322 
tissue flow direction symbol(s) formula 
apoplastic flow    

palisade mesophyll vertical a,pv    ppc hrf 211    

palisade mesophyll horizontal a,ph  cf12
1  

spongy mesophyll both a,s  cf12
1  

other any a 1 
    
transmembrane flow    

all any m 1 
    
gas phase flow    

all any g 1 
 323 
 324 


